Skip to content

The untold truth about what supports our life; cell signalling

What single biological function has been essential to every living organism’s growth, health and advancement – and is more important than any other?

It’s called cell signalling; the ability for one cell in the body to ‘talk’ to another.

Now here’s another question for you. What biological process does one in every three pharmaceutical drugs attempt to assist?

Cell Signalling.

Now there’s a link between today and our lifeforms all the way back to ‘slime’.

University of British Columbia researchers have identified a common ancestral gene. This gene’s function – cell signalling – enabled the evolution of advanced life over a billion years ago.

Found in all complex organisms, including plants and animals, it ‘encodes’ for a large group of enzymes known as protein kinases that enable cells to rapidly transfer information from one cell to another.

“If the duplications and subsequent mutations of this gene during evolution didn’t happen, then life would be completely different today,” said Steven Pelech, a professor in Division of Neurology in the UBC Faculty of Medicine. “The most advanced life on our planet would probably still be bacterial slime.”

Plants, animals, mushrooms and more all exist because they are made up of eukaryotic cells that are larger and far more complex than bacteria. Within these eukaryotic cells are hundreds of organelles that perform billions of diverse functions to keep them living, just as different organs do for the human body.

The new research, published this week in the Journal of Biological Chemistry, identified the gene that gave rise to protein kinases. On a cellular scale, these highly interactive signaling proteins play a role similar to the neurons in the brain by transferring information throughout the cell by a process known as protein phosphorylation.

This ability to transmit signals from one part of the cell to another not only enabled cells to become more complex internally, but also allowed cells to come together to form systems, paving the way for the evolution of intelligent life.

Research into these enzymes is obviously very important to medicine.  There are more than 400 human diseases like cancer and diabetes linked to problems with cell signaling.

Disease occurs when a cell gets misinformed or confused.
Today about one-third of all pharmaceutical drug development is targeted at protein kinases. For more than 30 years, researchers have known that most protein kinases came from a common ancestor because their genes are so similar.

“From sequencing the genomes of humans, we knew that about 500 genes for different protein kinases all had similar blueprints,” said Pelech. “Our new research revealed that the gene probably originated from bacteria for facilitating the synthesis of proteins and then mutated to acquire completely new functions.”

Cell signalling has another ally which is most unlike any pharmaceutical drug. Molecular hydrogen is the subject of 700 scientific studies, over a 150+ range of disease conditions, and as well as been identified as a potential selective antioxidant, anti-inflammatory and anti-allergenic, it has also been studies for its ability to assist cell signalling.

Why should we care? We have our cupboard full of pills and potions. Why should we try molecular hydrogen?

The secret lies in its nature. H2 – molecular hydrogen is the smallest molecule in the universe, made up of two of the smallest atoms in the universe. This gives it unique properties that place it in a class of its own. Firstly, its size means the once in the body it has the ability to pass through nay part of the body, including bone, muscle, even into the mitochondria within a single cell. Secondly, it is a simple molecule. What it does – it’s shouldn’t do. Pharma giants are shaking their heads in disbelief at the results users are claiming – results normally reserved for expensive and complex formulated drugs. In truth, at this stage of research, no-one knows why it has so many therapeutic effects, but the results are certainly obvious in the studies.

Want to learn more? Check this slide show prepared by Erica Whisson, Alkaway’s inhouse naturopath.

And.. if you’d like to try molecular hydrogen for yourself, here’s two ways.
The UltraStream                 I LOVE H2






Share on facebook
Share on twitter
Share on pinterest
Share on linkedin

To learn more about:

Hydrogen Water, Inflammation, Molecular Hydrogen, Scientific Studies, Uncategorized

Most Popular

Get The Latest Updates

Subscribe To Our Weekly Newsletter

No spam, notifications only about new products, updates.
On Key

Related Posts

A Few Words from Erin Brokovich that just About Summarize why you need the best water filter you can afford. Now.

A Few Words from Erin Brokovich that just About Summarize why you need the best water filter you can afford. Now.

“We are in a water crisis beyond anything you can imagine. Pollution and toxins are everywhere, stemming from the hazardous wastes of industry and agriculture. We’ve got more than 40,000 chemicals on the market today with only a few hundred regulated. We’ve had industrial byproducts discarded into the ground and into our water supply for years. This crisis affects everyone – rich or poor, black or white, Republican or Democrat. Communities everywhere think they are safe when they are not.

Saving thousand dollars a year is THIS easy!

Saving thousand dollars a year is THIS easy!

I am always in wonder at how some people complain about having no money.. and yet seem to have a blind spot on what they spend money on. Luckily for Mr Shanshan (whom I bet you’ve never heard of!) there are enough blind spotters in the world for him to become the 6th richest man in the world.

Pesticides causing Heart Disease.. and more…

Pesticides causing Heart Disease.. and more…

Organophosphates and carbamates are the more common active ingredients of household, garden, and farm insecticides, and are highly toxic to all animals and humans. What do they do to the heart? In a 2004 study, 37 adults were admitted to a Singapore hospital with acute pesticide poisoning (organophosphates or carbamate) over a three-year period, and 62 percent of these patients later developed cardiac complications.

<-- -->